Punto medio.

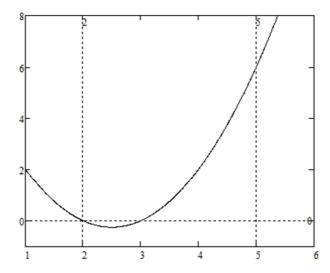
Mediante sumatoria Riemman determine el área bajo la curva de ecuación

$$f(x) = x^2 - 5x + 6$$

En el intervalo I[2,5] Utilice punto medio para el desarrollo

Solución.

Si graficamos la función f(x) en el intervalo dado tendremos que



Se observa una sección donde el área será negativa por lo que trabajamos la sumatoria en dos partes.

$$I_1[2,3]$$
 $I_2[3,5]$

Para la segunda parte, se tiene que la dimensión de la base será

$$\Delta x = \frac{5-3}{n} \implies \Delta x = \frac{2}{n}$$

Establecemos los puntos de cada rectángulo

$$x_0 = 3$$
 $x_1 = 3 + \frac{2}{n}$ $x_2 = 3 + \frac{4}{n}$... $x_i = 3 + \frac{2i}{n}$... $x_n = 3 + 2 = 5$

Por lo que se tiene que punto derecho es de la forma $x_i = 3 + \frac{2i}{n}$ y el punto izquierdo es de la forma $x_{i-1} = 3 + \frac{2(i-1)}{n}$, el punto medio se define como

$$x_{i_m} = \frac{(x_i + x_{i-1})}{2} \implies x_{i_m} = \frac{3 + \frac{2i}{n} + 3 + \frac{2(i-1)}{n}}{2} \implies x_{i_m} = \frac{\left(6 + \frac{4i}{n} - \frac{2}{n}\right)}{2}$$

$$x_{i_m} = \left(3 + \frac{2i}{n} - \frac{1}{n}\right) \implies x_{i_m} = \left(3 - \frac{1}{n} + \frac{2i}{n}\right)$$

Por lo que:

$$A_{\Delta x} = \frac{2}{n} * f(x_{i_m})$$

El área total

$$A_T = \sum_{i=1}^n \frac{2}{n} \left(x_{i_m}^2 - 5x_{i_m} + 6 \right)$$

El área real.

$$A_R = \lim_{n \to \infty} \sum_{i=1}^n \frac{2}{n} \left(\left(3 - \frac{1}{n} + \frac{2i}{n} \right)^2 - 5\left(3 - \frac{1}{n} + \frac{2i}{n} \right) + 6 \right)$$

Desarrollamos

$$A_R = \lim_{n \to \infty} \sum_{i=1}^n \frac{2}{n} \left(\left(3 - \frac{1}{n} \right)^2 + 2\left(3 - \frac{1}{n} \right) \left(\frac{2i}{n} \right) + \frac{4i^2}{n^2} - 5\left(3 - \frac{1}{n} \right) - 5\left(\frac{2i}{n} \right) + 6 \right)$$

Considerando que la variable es la "i" y no n dentro de la sumatoria tendremos que

$$A_R = \lim_{n \to \infty} \sum_{i=1}^n \frac{2}{n} \left(3 - \frac{1}{n}\right)^2 + \sum_{i=1}^n \frac{2}{n} \left(2\left(3 - \frac{1}{n}\right)\left(\frac{2i}{n}\right)\right) + \sum_{i=1}^n \frac{2}{n} \frac{4i^2}{n^2} - \sum_{i=1}^n \frac{2}{n} \left(5\left(3 - \frac{1}{n}\right)\right) - \sum_{i=1}^n \frac{10}{n} \left(\frac{2i}{n}\right) + \sum_{i=1}^n \frac{2}{n} \left(3 - \frac{1}{n}\right) + \sum_{i=1}^n \frac{2}{n} \left(3 - \frac{1}{$$

Utilizando las formulaciones correspondientes a la variable i con su potencia tendremos que

$$A_{R} = \lim_{n \to \infty} \frac{2}{n} \left(3 - \frac{1}{n} \right)^{2} n + \frac{8}{n^{2}} \left(3 - \frac{1}{n} \right) \left(\frac{n(n+1)}{2} \right) + \frac{8}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6} \right) - \frac{10}{n} \left(3 - \frac{1}{n} \right) n - \frac{20}{n^{2}} \left(\frac{n(n+1)}{2} \right) + \frac{12}{n} n$$

Tomando el límite tendremos

$$A_R = 2(9) + 4(3) + \frac{8}{3} - 10(3) - 10 + 12 \implies A_R = \frac{14}{3}$$

Ahora realice uds el otro intervalo. Y obtenga como respuesta total

$$A_{[2,5]}=\frac{29}{6}$$